
SPACE-FLIGHT DESIGN
VERIFICATION TECHNIQUES

By Omar Haddad
ReSpace/MAPLD Conference

August 2011

Introduction

 Covers verification issues, not design issues

 Covers Space-flight verification issues, not
general verification issues

 Agenda

 Testing Radiation-Hardened Designs

 Risk Mitigation

 Signal Visibility

 Cost and Schedule Reduction

A discussion of the unique challenges of verifying
designs destined for space environments

Testing Radiation-Hardened Designs

Triple Modular Redundancy

 TMR in FPGA Fabric
 TMR is built in at the register level
 Can’t verify TMR operation

 Synthesis-based TMR
 Use formal verification tools to validate synthesis
 Inject SEU and SET errors during gate-level simulation
 Impractical and tedious

 Medium and Course-Grained TMR
 User-designed voter
 Add error injection capability into design
 Verify voting and recovery scheme
 Verify event counters

 Real Radiation Testing Recommended

Error Detection And Correction
With Memories

 Error Injection
 Add error injection capability into design
 Consider one-time vs persistent injection

 Add visibility and error injection to syndrome data

 Correctable and Uncorrectable Errors
 Test limits of EDAC scheme

 Test error counters and error logs

 Test that uncorrectable errors are handled safely
 Interrupt, assert error flag, abort transaction, etc

 Test EDAC With Scrubbing, DMA, Initialization,
Arbitration

Latch-Up Detection Circuits

 Protection For Radiation-Soft Devices

 Solid State Power Controller (SSPC) Devices

 Verify ‘Trip’ Behavior

 Simulation test bench should be able to ‘trip’ the
circuit using a simulation-only ‘trip’ input

 Add test point on PCB to inject a current load

 Verify Recovery From Tripped State

Adding Visibility For Automated
Simulations

 Some transactions are not ‘visible’ to
automated tests
 Memory scrubbing, mode register writes, SDRAM

refresh cycles

 Modify simulation models to detect such
transactions
 SDRAM simulation models

 Use non-synthesized RTL code to detect such
transactions
 -translate on/off directives

Finite State Machine Operation

 Radiation Environment
 SEU and SET could cause invalid transitions to,

possibly, invalid states

 Fault Detection
 Verify that fault conditions are detected

 Use translate on/off directives to inject faults or
‘disable’ the FSM

 Verify Recovery Scheme
 FSM reset, normal operation

 Use FSM coverage tools

Watchdogs

 Commonly used to detect faults

 Implement test-mode in simulation
environment

 Advances watchdog time quicker

 Reduce simulation time

 Use different VHDL package file for simulation

 Defines terminal counts, time parameters, etc

 Verify recovery from watchdog timeout state

 Exercise entire range of timer values

When “failure is not an option”, risk must be
managed and mitigated as much as possible using
good verification techniques

Risk Mitigation

Verification Plan

R
is

k

Verification Effort

Product Quality

 Plan Contents
 Block Diagrams
 Simulation and Lab

Testing

 List of Tests and
Descriptions

 Requirements/Features
Matrix

 GSE Descriptions
 Test Bench Operation
 Issue Tracking

High Level of Code Coverage

 Goal = 100% line

 Use coverage directives
to exclude code

 Disposition Holes

 Use report during review
process

100

95

90

84

86

88

90

92

94

96

98

100

Coverage

Line

Branch

Condition

Random Testing

 Tricky Corner Case Bugs

 Select Parameters To Randomize
 Data rate, transaction size, number of transactions, delay between

transactions, etc

 Select Constraints
 Max data rate in mode X, max transaction size in mode Y, etc

 Select Random Variable Distribution
 Add more weight to normal operating parameters

Directed Tests

Random Tests

Beginning End

Bugs

Cost

Self-Checking Automated
Tests
 Simulation and Lab Environments

 Do NOT rely on visual waveform analysis
 You WILL miss problems

 Add timing checks in simulation models of
non-FPGA devices
 Use assertion statements to cause the test to fail

when violations are encountered

 Use for regression testing, code coverage,
SDF simulations
 Run in batch mode (non-interactively)

Requirements Traceability

 Create list of design
requirements

 Create list of design features

 Each requirement/feature
should be traced back to a
verification test

 Review that tests adequately
exercise
requirements/features

Environmental Testing

 Automate and Archive

 Vary Board Voltages During Thermal Vacuum
Testing

 Emulates TID exposure effects

 Setup/Hold Timing

 FPGA Core Voltage

 Voltage Regulator Feedback Resistor

Signal Visibility

How to overcome the challenges of signal visibility
during environmental testing

Probing Internal FPGA Signals

 Actel-Microsemi Silicon Explorer

 Can view up to 4 signals simultaneously

 FPGA output limited to ~80MHz

 Choose JTAG signal buffering and
termination wisely

 Use differential drivers for higher frequencies

Debug Mux
 Add debug multiplexor to

FPGA design
 Inputs come from user-logic
 FSM vectors, data busses,

flags, etc

 Select signals driven by user
 Output goes to FPGA IO

pins
 On-board logic analyzer

connector
 Board IO

 Good for higher
frequencies

 Define synthesis
constraints appropriately

FPGA

Logic
Analyzer

On-board Logic Analyzer

 Xilinx ChipScope Pro,
Actel CLAM

 Use FPGA resources

 Internal triggering and
signal buffering

 Limitations
 Trace depth

 Sample rate

 Number of signals

Using SERDES

 Connect multiple DUT IO to on-board
SERDES device

 SERDES components inactive during normal
operation

 Can use with debug mux or internal probe

Probing Method Comparison

Method Overhead Complexity Width Depth Cost

Internal Probe Low Med Low High Low

Debug Mux Med Low Med Low Low

On-Board LA High High Low-Med High Med

SERDES High High Low-Med High High

Width = Number of signal that can be probed simultaneously
Depth = Number of signals that can be selected for probing without resynthesizing

Practical verification tips that help to reduce cost
and schedule.

Cost And Schedule Reduction

Simulation Intensive

 Invest in developing a high-fidelity simulation
environment

 Use datasheets to create simulation models

 Simulate PCB netlist

 Simulate GSE and connectivity to DUT

 Use code coverage to ensure that design is
fully tested

 Avoid costly PCB re-spins

 Avoid late-phase bugs

Board Level Simulation and
Testing
 Enables test portability

from simulation to lab
testing

 FPGA-level testing is good
for creating corner case
scenarios easier
 Board-level test bench is

sufficient

 Catch netlist errors before
building PWB

 Catch manufacturing
defects as early as possible

FPGA
Testbench

Board
Testbench

(Normal
Operation)

Using Programmable GSE

 Control Design of GSE
 Highly customized

feature/requirements

 Implementing modified
standard

 Reduce GSE Costs
 Integrate functionality

of multiple GSE units
into one

 Replace costly COTS
units with
programmable GSE

 Weigh long-term cost
of developing IP core
Vs. purchasing COTS
GSE

Programmable

GSE

COTS
GSE

Libraries of Verification IP

 Use Standardized Interfaces
 Easier to mix and match cores needed

 Easier to share with others

 Interconnect bus

 Thorough Documentation
 Allows others to use IP properly

 HW and SW Elements
 Document, develop, and manage both elements

 ‘Plug-n-Play’
 Hide lower level details as much as possible

Code Re-use

 Standardize the IP core design process
 Use an agency-wide document

 Architect designs to maximize reuse
 Add generic functionality as needed

 Avoid temptation to over-design

 Use board level test bench
 Simulation tests can be re-used in lab

 Treat board as a black-box
 Do not force or sample internal signals with tests

 Drive and sample board-level IO with GSE simulation
models

A GSFC-developed digital design verification
process

Case Study: Total Verification System

Test Bench Diagram

 Detailed diagram described in each board’s
verification plan document

 Board-level netlist simulation
 IP Cores determine capability of TVS

TVS GSE

TVS FPGA
TVS GSE

TVS FPGA
Host
PC

DUT

FPGA 1

FPGA N
USB

TVS IP Cores

TVS Hardware

 Xilinx Spartan-3 FPGA
 LVDS – 12 out, 12 in (on 6 MicroD-9 connectors)
 RS422 – 20 out, 44 in (on 5 D-sub connectors)
 TTL/LVTTL Outputs – 20 (3.3V/5V selectable in

groups of 4)
 Digital Inputs – 8 (accepts 3.3V – 15V)

TVS FPGA
 Re-usable Modular

Verification IP Cores

 Customizable
Reference Designs

 Hi Fidelity
Simulation Models

TVS FPGA

Host
Interface

IP Core2 IP Core3 IP Core4

IP Core1
Wishbone Bus

DUT

Function
A

Function
B

Function
C

HOST PC

Test

DLL1 DLL2 DLL3 DLL4

TVS C++ Classes

 Provide high-level functions that hide lower
level details

 Furnished as DLLs and header files

 Can be compiled for use with a variety of
programming languages

 Used by regression tests to exercise DUT
requirements and features

 Each IP core is provided with its own DLL

C++ Based Verification
Environment GSFC-

Developed
Simulator
Interface

 Re-Use C++
Tests
 Recompiled to

use USB driver

 Run Tests
Control Center
 User-friendly

GUI

Host PC
ModelSim Simulator

TVS

GSE

and

FPGA

Board

(DUT)S
im

u
la

to
r

In
te

rf
a
c
e

C++

tests

Host PC

U
S

B

D
ri
v
e

r

USB

Simulation

Board Lab Testing

TVS

GSE

and

FPGA

Board

(DUT)

Run

Tests

C++

tests

Run

Tests

Current Usage at GSFC

Mission Sub-System Units

LRO C&DH 2

GPM C&DH 5

MMS C&DH, ACS 29

Astro-H ADRC 1

ICE-Sat-2 ATLAS Avionics 9

 Total: 46 Units

 Assembled and
procured by third party
for each mission

Commercialization Effort

 TVS HW and SW available for
commercialization

 Licensing Agreement for HW

 Copyright for SW elements of test bench
environment

 TVS IP cores can be made available

 Copyright for VHDL and C++ code

 Contact for
more information

